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Abstract 

Sweat contains biomarkers for real-time non-invasive health monitoring, but only a few relevant analytes 
are currently used in clinical practice. In the present study, we investigated whether sweat-derived 
extracellular vesicles (EVs) can be used as a source of potential protein biomarkers of human and 
bacterial origin.  
Methods: By using ExoView platform, electron microscopy, nanoparticle tracking analysis and Western 
blotting we characterized EVs in the sweat of eight volunteers performing rigorous exercise. We 
compared the presence of EV markers as well as general protein composition of total sweat, EV-enriched 
sweat and sweat samples collected in alginate skin patches.  
Results: We identified 1209 unique human proteins in EV-enriched sweat, of which approximately 20% 
were present in every individual sample investigated. Sweat derived EVs shared 846 human proteins 
(70%) with total sweat, while 368 proteins (30%) were captured by medical grade alginate skin patch and 
such EVs contained the typical exosome marker CD63. The majority of identified proteins are known to 
be carried by EVs found in other biofluids, mostly urine. Besides human proteins, EV-enriched sweat 
samples contained 1594 proteins of bacterial origin. Bacterial protein profiles in EV-enriched sweat were 
characterized by high interindividual variability, that reflected differences in total sweat composition. 
Alginate-based sweat patch accumulated only 5% proteins of bacterial origin.  
Conclusion: We showed that sweat-derived EVs provide a rich source of potential biomarkers of 
human and bacterial origin. Use of commercially available alginate skin patches selectively enrich for 
human derived material with very little microbial material collected. 

Keywords: extracellular vesicles, sweat, proteomics, alginate, bacteria 

Introduction 
Despite the growing need to develop P4 

(predictive, preventive, personalized and participa-
tory) medicine, non-invasive, real-time health 
monitoring is still limited to only few parameters. One 
of the most promising body fluids to exploit in this 

context is sweat, as it may provide an alternative to 
blood biomarker analysis since it is collected 
non-invasively and in real-time. 

Sweat has already attracted research interest for 
diagnostic purposes [1,2] in mental illness [3], 
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tuberculosis [4], Behcet’s disease [5] and diabetes [6,7]. 
However, at present it is only routinely used in 
diagnosis of cystic fibrosis in newborn babies [8] due 
to limited number of known analytes [2,9–11]. The 
discovery that biofluids transport secreted extracel-
lular vesicles (EVs) carrying a wealth of analytes, 
including proteins, lipids, metabolites and many RNA 
species, means that it may be possible to exploit EVs 
to extract information even from a harsh environment 
like the skin surface [12,13]. Bacterial EVs [14] derived 
from skin microbiota can also be a valuable source of 
health-related analytes [15,16]. However, the lack of 
methods to separate bacterial and human-derived 
components of sweat presents a challenge in using 
sweat for health monitoring [17]. An additional 
hurdle is the variation in amount of sweat collected 
and concentrations of analytes [10,11]. This problem 
may be solved with the development of new wearable 
sensors [2,18] with detection capabilities for sweat 
glucose [19,20], alcohol [19], cortisol [21], lactate [22] 
alone or in combinations. In these wearable devices, 
analytes are concentrated using various strategies 
making the amount of liquid sweated less of a 
drawback. What would be the best way to design a 
wearable device for collection of sweat EVs is not 
known. One option may be using of alginate-based 
hydrogels that are biocompatible, biodegradable, 
inexpensive [20] and suitable for encapsulation of 
exosomes [23]. 

Microfluidic platforms for blood EV analysis to 
detect specific mRNA [24], miRNA sensors for EV 
detection, as well as microarray chips for detecting EV 
protein biomarkers in blood [25,26] have already been 
developed. Wearable sensors to monitor proteins and 
metabolites in “alternative” body fluids such as sweat, 
saliva, and interstitial fluid are also being developed 
[18]. To apply these innovations to sweat EVs analysis 
we need a better characterization of their cargo, such 
as RNA and proteins. RNA and DNA composition of 
EV-enriched human sweat [27,28], metabolomics 
analysis of sweat [11,29–32] and sweat EVs [33], as 
well as proteomics analysis of whole sweat 
[3,4,9,11,34–36] and sweat-derived exosomes of 
human origin pooled from several individuals [37] 
have been reported. Our aim in the present study was 
to characterize protein cargo of EVs in individual 
unpooled sweat samples collected during a biking 
exercise. We report here that human EV-enriched 
sweat contains proteins originating both form host 
and microbiome and their composition reflects 
protein profiles of total sweat. We also applied an 
alginate skin patch for sweat collection and 
demonstrated that EV proteins can be analyzed from 
such patches. These skin patches selectively enriched 
human proteins while only few bacterial proteins 

could be identified. Taken together, these data show 
that the development of wearable devices for 
real-time analysis of biomarkers in sweat EVs can be 
achieved using material already being developed for 
detection of other parameter of sweat [38–40]. 

Methods 
Sweat collection and exercise protocol 

Eight healthy male volunteers (age 35 ± 10 years) 
were given information about the study and provided 
limited health and fitness self-assessment and 
informed consent. Ethical permission (EETTMK:110/ 
2015) was approved by ethical committee of Oulu 
University medical School according to the Finnish 
Medical Research Act (488/1999). Volunteers were 
asked to avoid using soap and perfume for 24 hours 
before the exercise and to shower with water only for 
15 minutes immediately before exercise. Volunteers 
used bike (ProSpinner spinning bike, Karhu) at room 
temperature (25 oC) for 30 minutes including 10 
minutes warm up; pace and effort was up to the 
individual. Sweat was collected from the upper body, 
arms and torso as described [27] by using one size 
polyethylene raincoat (Tammer Brands Oy, Finland) 
and disposable gloves (024199, GIA, France). After 
exercise sweat was taken by cutting the gloves at 
finger level and inserting sterile pipet to aspirate 
fluid. When there was sweat accumulated in the coat 
front, it was also collected in the same manner. Head 
dripping sweat was collected in the raincoat hood. 

Sweat samples (31 ± 26 ml) were passed through 
a 40 μm cell strainer (22363547, Fisherbrand), then 
through a 0.8 μm filter (Millipore). Filtered sweat was 
concentrated on Centricon Plus-70 centrifugal filter, 
cut-off 100 kDa (UFC710008, Millipore, Ireland) 
according to manufacturer instructions. One half of 
the concentrated sweat was kept at -70 oC for further 
analysis (“total sweat”), and another half was used for 
EV isolation. 

EV samples preparation 
EV samples were prepared separately from each 

individual collection using ExoEasy kit (76064, 
Qiagen, Germany) as per manufacturer’s protocol. 
Briefly, one volume of buffer XBP was added to 1 
volume of sample and mixed well by inverting. The 
sample/XBP mix was centrifuged at 500 x g for 1 min. 
The flow-through was discarded, and 10 mL of buffer 
XWP was added and centrifuged at 4000 x g for 5 min 
to remove the residual buffer from the column. The 
spin column was transferred to a fresh collection tube. 
Buffer XE was added to the membrane (250-400 µL) 
and incubated for 1 min. The eluate was collected by 
centrifuging at 500 x g for 5 min.  
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Skin patches 
The skin patch consisted of fixation film (1626W, 

3M Tegaderm Film, Germany) and Calcium alginate 
dressing (Cutiderm, JFA Medical, UK). The 25 cm2 
patch was placed approximately 10 cm below the 
armpit before biking exercise (Supplementary Figure 
1). After exercise, dressing was collected in a 50 ml 
tube (62.547.254 Rohre, Germany) containing 30 ml of 
1xPBS (20-031-CV, Corning, USA) and vortexed 
vigorously. The sample was passed through a 40 μm 
cell strainer (22363547, Fisherbrand) and centrifu-
gated (4000 x g 15 min) to remove particles originating 
from skin dressing. Debris-free supernatant was 
concentrated on Centricon Plus-70 centrifugal filter. 
The concentrated skin patch sweat was additionally 
centrifuged (21000 x g, 15 min), and the supernatant 
was collected. 

ExoView analysis 
For analyzing expression of EV biomarkers and 

EV quantification the ExoView R100 platform 
(NanoView Biosciences, Boston) was used. Human 
ExoView Tetraspanin (EV-TETRA-C) kit was used for 
the analysis. The samples (EV, total sweat and patch) 
were processed according to the manufacturer’s 
protocol. 1 µg of protein samples were carefully 
loaded onto each chip and incubated for 24 h. After 
that, the chips were washed three times on an orbital 
shaker to remove unbound particles. The chips were 
incubated for one hour with the human anti-CD81 
(BD Pharmingen 555675), anti-CD63 (BD Pharmingen 
556019), and anti-CD9 (Biolegend V P018) fluores-
cently labelled antibodies. Mouse IgG (Biolegend 
400101) were used as controls. The immunostained 
chips were washed three times in PBS, once in 
deionized water and dried. Imaging and data 
acquisition of the stained chips were performed with 
the ExoView R100 (NanoView Biosciences) and the 
data analysis with the ExoViewer 3 (NanoView 
Biosciences). 

Western blotting  
Proteins (10 µg for total sweat and 2 µg for 

EV-enriched sample) were separated on 10% SDS 
PAA gel, then transferred to nitrocellulose membrane. 
Anti-CD63 (Santa Cruz, sc-365604) dilution 1:1000 
was used for detection. Total proteins on membranes 
were stained with total stain Q (Azure Biosystems). 
The respective secondary peroxidase-conjugated IgG 
antibodies (Invitrogen) at 1:5000 dilutions were then 
applied to the membranes. The Lumi-Light Western 
Blotting Substrate (Roche Diagnostics, Switzerland) 
was used to visualize the bound antibodies. 

Electron microscopy and immunoelectron 
microscopy  

EV samples were analyzed by transmission 
electron microscopy (TEM). 2 µl of each sample were 
deposited on a Formvar carbonated grid (glow- 
discharged) and after negative staining with 2% 
uranyl acetate and immunostaining with anti-CD63 
antibody (Abcam Ab193349; 1:50 dilution) examined 
using the Tecnai G2 Spirit transmission electron 
microscope (FEI, Eindhoven, The Netherlands). 
Protein A-gold complex (10 nm) served to detect the 
primary anti-CD63 antibody. Images were captured 
with a charge-coupled device camera (Quemesa, 
Olympus Soft Imaging Solutions GMBH, Münster, 
Germany) at 1:49,000, 1:30,000, and 1:18,500 
magnifications. 

Nanoparticle tracking analysis 
Nanoparticle tracking analysis (NTA) was 

performed using a Nano Sight NS300 (Malvern 
Panalytical) equipped with a 405 nm laser. Tempera-
ture was monitored throughout the measurements. 
Four or eight 60 s videos were recorded of each 
sample with camera level 14 and detection threshold 
set up at 3. Data were analyzed with NTA software 
version 3.4. Double distilled water was used to dilute 
the starting material. 

Lectin microarray analyses 
Sweat samples were first centrifuged at 12,000×g 

at 4 °C for 15 min, after which 12 μg of total protein 
was labeled with 6 μg of NHS activated DyLight 633 
protein dye (Thermo Scientific, Waltham, USA) in 
50 μL of labeling buffer for 1h at RT with constant 
agitation (600 rpm). The reaction was quenched at RT 
(1 hr) by adding 50 mM ethanolamine in 
Tris-HCl/150 mM NaCl buffer in the labeling mix. 
Labeled samples were then cleared by centrifugation 
(12,000×g for 10 min in RT) and applied onto 
pre-printed and pre-quenched (with 50 mM ethanola-
mine) Nexterion H microarray slides (Schott, 
Germany), and further incubated in a humidified 
chamber with constant agitation for 2 h in RT. Slides 
were then washed 5 times for 5 min each with the 
assay buffer. Array images were generated using the 
Genepix 4200AL laser scanner (Auto Loader, Axon 
Instruments) using an appropriate filter set for the 
DyLight 633™ dye. The mean intensities of bound 
label were quantified in triplicate from 4 parallel 
arrays (36 measurement spots/sample) using the 
GenePix® Pro Microarray Analysis Software. The 
lectins used for microarray printing were purchased 
from the Vector Laboratories (Youngstown, OH, 
USA). Their sugar specificities are shown as described 
in the manufacturer’s product sheets (Supplementary 
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Table 7).  

Proteomics analysis 
Proteins were extracted from individual EV 

samples by methanol/chloroform precipitation. Dried 
protein pellets were diluted in 4× Laemmli buffer 
containing 10% β-mercaptoethanol, loaded into 12% 
SDS polyacrylamide (PAA) gel (12% Mini-PROTEAN 
TGX Precast Protein Gel, Bio-Rad) and run for 
maximum 15 min at 100–110 V. SDS gel pieces stained 
with Sypro Ruby (Sigma, S4942) were cut out and 
processed as follows: 3 × 5 min washing steps with 50 
mM ammonium-bicarbonate in 40% acetonitrile/60% 
water to destain the gel, reduction with 20 mM 
dithiothreitol for 30 min at room temperature, 
alkylation with 45 mM iodoacetamide for 30 min at 
room temperature, washing and tryptic digestion 
with 5 μl of trypsin solution (20 ng/μl proteomics 
grade trypsin (Sigma) in trypsin buffer (40 mM 
ammonium-bicarbonate in 9% acetonitrile/91% 
water)) overnight at 37ºC. The supernatant was 
transferred to a sample vial before the gel piece was 
extracted a second time with 15 μl of 0.1% 
trifluoroacetic acid in water. The combined extracts 
were centrifuged and 25 μl of the supernatant were 
transferred to a sample vial to allow LC–MS (Liquid 
chromatography–mass spectrometry) analysis using 
an Easy-nLC 1000 (Thermo Scientific) system coupled 
to a Fusion Lumos Tribrid mass spectrometer 
(Thermo Scientific).  

Peptides were trapped on an AcclaimPepmap 
100 C18 3 µm, 0.075 × 20 mm (Thermo Scientific) trap 
column and separated on a Thermo AcclaimPepmap 
RSLC C18 2 µm, 0.075 × 150 mm analytical column, 
using a gradient from 97% A (0.1% formic acid) to 
35% B (0.1% formic acid in CAN) over 90 min, flow 0.3 
µl/min. The mass spectrometer was operated in 3 s 
cycles where the MS spectra were recorded with the 
orbitrap analyzer at resolution 120,000 allowing the 
collection of up to 4e5 ions for maximal 50 ms before 
switching to MSMS mode. Multicharged ions 
(threshold 5e4) were fragmentated with equal priority 
by higher-energy collisional dissociation (HCD) (30% 
collision energy) and collision-induced dissociation 
(CID) (35% collision energy, 10 ms activation, Q 0.25) 
using quadrupole isolation with 1.6 Da width and 21 s 
dynamic exclusion. HCD ions (up to 5e4 ions) were 
collected for max 200 ms in the orbitrap analyzer at a 
resolution of 15,000. CID ions were recorded in the ion 
trap (rapid mode) aiming at higher sensitivity 
(threshold 1e4).  

Bioinformatics 
To identify proteins tandem mass spectra data 

was analyzed with PEAKS software (version 10.6) 

against human and bacterial proteins in UniProt 
Swissprot and UniProt trEMBL databases (version 
v2022_03). Database search parameters were set as 
follows: precursor mass tolerance of 10 ppm, 
fragment mass tolerance of 0.02 Da and a maximum of 
two missed trypsin cleavages. False Discovery Rate 
(FDR) for both peptide and protein identifications was 
set to 1.0 %. Static modification was set to carbamido-
methyl of cysteine, and variable modification to 
oxidation of methionine. A protein was considered 
identified if it was presented with at least one unique 
peptide and the total protein coverage of the 
supporting peptides was ≥ 1 %. Negative controls 
(PBS washes of unused disposable gloves) were 
analyzed in parallel with total sweat, EV-derived and 
patch-bound samples. All the proteins identified in 
negative control samples were excluded from the 
further protein analysis. These contaminants included 
some of the most abundant proteins of human sweat 
such as dermcidin and albumin [41] as well as 
multiple keratins (Supplementary Table 1). Protein 
identifications were processed in RStudio (version 
2022.07.2, R version 4.2.2) and with package ggplot2 
(version 3.4.0). 

Functional classification of human proteins was 
performed using the PANTHER (Protein ANalysis 
THrough Evolutionary Relationships) Classification 
System (www.pantherdb.org) [42]. Statistical analysis 
for PANTHER protein classes was performed in 
GraphPadPrism 10.0.2 using one-way ANOVA with 
post hoc Tukey’s multiple comparisons test. Adjusted 
p < 0.05 was considered significant. Statistical analysis 
in PANTHER overrepresentation test was done with 
Fisher’s exact test using the Bonferroni correction for 
multiple testing. GO (Gene Ontology) annotations 
with Bonferroni-corrected p < 0.05 and enrichment 
fold ≥ 10 were visualized in scatterplots with REViGO 
(http://revigo.irb.hr/) [43]. For bacterial proteins, GO 
annotations were retrieved with Retrieve/ID 
mapping tool (https://www.uniprot.org/ 
uploadlists/) from UniProt database and annotated 
manually to ancestor GO terms [44]. Venn diagrams 
were prepared using Venny (version 2.1) 
(http://bioinfogp.cnb.csic.es/tools/venny/). 

The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium 
via the PRIDE [45] partner repository with the dataset 
identifier PXD045589. 

Results 
Characterization of EVs in human sweat 

Sweat samples were collected from eight 
volunteers undergoing vigorous biking exercise for 30 
min, as described previously [27]. Half of each sweat 
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sample was used for EV isolation with an ExoEasy kit, 
and another half was kept to represent total sweat 
(Figure 1). During the same exercise volunteers 

carried skin patches, which were processed as 
described in Materials and Methods. The samples 
from each individual were analyzed separately.  

 
 

 
Figure 1. Workflow of EV isolations from sweat. Image created with BioRender.com. 
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The presence of EVs expressing typical exosomal 
markers CD63, CD81 and CD9 was analyzed in sweat 
by using ExoView R100 platform. When equal 
amount (1 µg) of protein was loaded into each chip, 
ExoView chips functionalized with anti-CD63 
antibody (Figure 2A, Supplementary Figure 2A) 
bound higher number of EVs in all types of sweat 
samples (total, EVs enriched and patch) as compared 
to chips carrying anti-CD9 and anti-CD81 antibodies 
(Supplementary Figure 2B,C). These results 
correspond well to the previous findings that CD63 is 
the most abundant tetraspanin marker in sweat EVs 
[27,28]. The total number of EVs captured on CD63 
chips in skin patch samples comprised about 24% of 
EVs from EV enriched sweat and about 58% of 
concentrated sweat (Figure 2A). The mean sizes of 
sweat EVs, according to ExoView analysis, were 55 ± 8 
nm. in total sweat, 68 ± 26 nm in EV enriched samples, 
and 57 ± 16 nm in sweat sample collected with patch 
(Supplementary Figure 3A). Comparison of EV 
samples isolated from different volunteers did not 
show much difference between samples, with CD63, 
CD81 and CD9 positive vesicles constituted, 
correspondingly, 58-66.5%, 11.6-26.4% and 39-49% of 
total number of nanoparticles in EV enriched samples 
(Supplementary Figure 3B). The presence of CD63 
exosomal marker in total sweat and EV enriched 
preparations was confirmed by Western blotting 
(Figure 2B; Supplementary Figure 4).  

Number and size distribution of EVs were 
measured by NTA. Average particle/ml concentra-
tion in total sweat samples was 2.68e+11 ± 1.58e+10 
particles/ml. The amount of EVs in EV-enriched 
samples was 1.59e + 11 ± 1.20e+10 particles/ml, with 
lower numbers found in patch samples 
(3.38e+10 ± 4.10e+08 particles/ml) (Figure 2C). Total 
sweat was characterized by one distinct peak of EVs 
with the mean size of 130.8 ± 3.6 nm. In EV-enriched 
samples, EVs had mean size of 163 ± 12.3 nm, with a 
main peak at 96-119 nm and several smaller peaks at 
about 179 nm and 268 nm. Patch EVs were 
characterized by a similar mean size of 168.4 ± 2.9 nm, 
but more even distribution as compared to 
EV-enriched samples with the single peak at 163 nm 
(Figure 2C). 

Concentrated total sweat and EV-enriched sweat 
under TEM displayed well-defined EVs in the size 
range of 30 to 200 nm (Figure 2D). Patch samples 
usually had lower number of EVs, but also less 
non-EV contaminant particles visible. Immunoelec-
tron microscopy showed that many EVs expressed 
CD63 marker. In general, the obtained data confirmed 
that isolation method we used in the study results in 
purification of high amount of EVs from human 
sweat. Calcium alginate patches accumulate enough 

CD63-positive EVs to be detected by immunoelectron 
microscopy and ExoView EV analysis platform. 

Human proteins in sweat EVs  
We next performed mass spectrometry analysis 

of individual sweat samples: total, EV-enriched, and 
patch-derived, to find out their protein composition. 
In total, 1305 unique human proteins were identified 
(Figure 3A; PEAK search raw data are shown in 
Supplementary Table 1; full list of identified human 
proteins shown in Supplementary Table 2). Of the 
total, 1209 proteins were present in EV-enriched 
samples, with approximately 70% of EV proteins in 
common with total sweat (846 proteins) and about 
30% with patch samples (368 proteins). The numbers 
of proteins identified exclusively either in total sweat 
(83) or patch (23) were rather low. As expected, each 
of the analyzed EV-enriched sweat samples contained 
typical exosomal markers CD63, CD9, ALIX 
(ALG-2-interacting protein 1), syntenin-1, annexin A5, 
HSP90 (Heat shock protein 90 kDa) and HSP70 (Heat 
shock 70 kDa protein) [12,13], and the majority of 
these samples (6-7 out of 8) contained CD81 and 
TSG101 (Tumor susceptibility 101) (Figure 3B, 
Supplementary Table 2). In some samples we also 
identified several EV proteins that were previously 
suggested to be liquid biopsy markers for lung (LRG1 
(Leucine-rich alpha-2-glycoprotein), tetraspanin-8), 
prostate (PSA (prostate-specific antigen)), bladder 
(TACD2 (Tumor-associated calcium signal transducer 
2)), colorectal and pancreatic (glypican-1) cancers 
(reviewed by [46]) (Figure 3B). The majority of the 
same proteins were also found in total concentrated 
sweat, though in lower number of samples. As for 
sweat collected with patches, it contained only CD63, 
the most abundant marker of sweat EVs, as well as 
heat shock proteins 70 and 90. 

We used PANTHER (http://pantherdb.org/) 
[42] to group the sweat EV proteins into molecular 
classes (Figure 3C, Supplementary Table 3). The most 
represented classes were enzymes, which were either 
metabolite interconversion enzymes (21.1±2.1%), 
including hydrolases (PC00121), oxidoreductases 
(PC00176) and transferases (PC00220), or protein 
modifying enzymes (12.9±0.9%), which were 
predominantly proteases (PC00190). Also, 
protein-binding activity modulators (10.4±0.8%) and 
defense/immunity proteins (9.4±2.1%) such as 
immunoglobulins (PC00123) were found highly 
represented in the sweat EVs, while no other 
molecular class comprised more than 5% of the total 
protein number. There was little difference in protein 
classes distribution between total, EV-enriched and 
patch-collected sweat, indicating that sweat EVs could 
be used to reliably assess composition of the whole 
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sweat. Most notably, defense/immunity proteins 
were significantly more abundant in total sweat 
samples (14.2±2.7%), while protein-binding activity 

modulators (14.6±4.7%) were overrepresented and 
metabolite interconversion enzymes (14.1±4.4%) 
underrepresented in patch samples. 

 
 

 
Figure 2. Characterization of EVs present in total sweat with EV-enriched sweat samples and skin patches. (A) Analysis of sweat EVs with ExoView platform. 
ExoVIew chip carrying CD63 antibody was used. Total numbers of detected EVs in each sample (1 µg total protein) are shown by black bars, number of EVs expressing CD63, 
CD81, and CD9 is shown by red, green, and blue bars, correspondingly. Data represent mean ± SEM from n = 3 slots on a chip. (B) Western blot analysis with anti-CD63 
antibodies. Neg – Negative control (PBS after washing of glove and processed the same as sweat sample), Tot – total sweat, EV – EV enriched sample. Images of uncropped blots 
are shown in Supplementary Figure 4. (C) EV concentrations and size distribution measured by NTA. Dilutions used: 1:1000 for total sweat and EV-enriched samples, 1:100 for 
patch sample. (D) Immuno-TEM with anti-CD63 antibody (magnification 1:18,500). 
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Figure 3. Human proteins in sweat EVs. (A) Venn diagram comparing human proteins identified in all individual sweat patch, EV-enriched and total (concentrated) sweat 
samples. All three types of samples were collected from 8 volunteers during the same biking exercise. (B) Number of samples in which selected proteins typical for EVs or 
associated with cancer were identified. HS71A: HSP70-1A; CD63: CD63 antigen; CD9: CD9 antigen; SDCB1: Syntenin-1; PDC6I: ALIX; A2GL: LRG; CD81: CD81 antigen; 
HS90A: HSP90-alpha; EGFR: Epidermal growth factor receptor; TS101: ESCRT-I complex subunit TSG101; GPC1: Glypican-1; TSN8: Tetraspanin-8; KLK3: PSA; TACD2: 
Tumor-associated calcium signal transducer 2. (C) Distribution of proteins by molecular classes. Proteins were analyzed using the PANTHER (http://www.pantherdb.org/). Each 
bar represents individual class, error bars show SEM for different samples. The percent share of the total for each molecular class is shown. All molecular classes identified in 
samples and statistical analysis results are shown in Supplementary Table 3. * p ≤ 0.01, ** p ≤ 0.05. 
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In accordance with our data on protein 
molecular classes, Gene Ontology (GO) analysis for 
“biological processes” (https://geneontology.org/; 
summarized and visualized at http://revigo.irb.hr/) 
showed “metabolic process” (GO:0008152) and 
“cellular process” (GO:0009987) to be most common 
for total sweat, sweat EVs and patch samples 
(Supplementary Table 4). Overrepresentation test 
demonstrated that processes related to ESCRT 
(endosomal sorting complex required for transport) 
disassembly and viral budding were most enriched 
for total and EV-enriched sweat samples 
(Supplementary Table 4; Supplementary Figure 5). In 
addition, EV-enriched samples had strong 
overrepresentation for proteins involved in positive 
regulation of exosomal secretion (GO:1903543; 
11.45-fold, p= 3.49E-03). Patch samples were enriched 
for proteins involved into several metabolic processes, 
protein refolding and antibacterial humoral response. 

GO analysis for “cellular components” showed 
that the most common “Cellular anatomical entities” 

for all sample types (total, EV-enriched and patch) 
were membrane proteins and intracellular structures 
(Supplementary Table 4). Overrepresentation tests 
found proteasomal complexes to be most strongly 
enriched in total sweat and sweat EVs, while patch 
samples also were highly enriched for IgA 
immunoglobulin complexes (Supplementary Table 4; 
Supplementary Figure 6). 

GO analysis for “molecular function” showed 
that the majority of proteins from all types of samples 
(total, EV-enriched and patch) were involved either in 
catalytic activity or binding (predominantly protein 
binding) (Supplementary Table 4). In overrepresenta-
tion tests we observed highest enrichment of sweat 
EV proteins for mannosidase activity, total sweat 
proteins for chloride ion binding and interleukin-1 
receptor binding, and patch proteins for several 
enzymatic pathways and myosin V binding 
(Supplementary Table 4; Supplementary Figure 7).  

 

 
Figure 4. Comparison of obtained data with previous proteomics studies results. Comparison of sweat proteins identified in our study with (A) proteins described in 
total sweat upon pilocarpine stimulation (“Total (pilocarp)”) [35] and (B) in sweat exosomes (”exosome”) [37]. (C) Comparison of proteins found in all EV-enriched sweat 
samples with ExoCarta data for human biofluids’ and keratinocytes’ EVs (http://www.exocarta.org). (D) Venn diagram comparing “core” sweat EV proteins identified in our study 
with skin washes (”skin secretome”), dermal interstitial fluid (”Dermal ISF”) (only proteins significantly higher expressed in ISF compared to plasma are analyzed), and blood EVs 
(only proteins significantly induced in plasma by exercise are analyzed) (”Blood exercise”) [47–49]. Actual protein lists used for comparisons are given in Supplementary Table 5. 
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To find out how well sweat protein composition 
identified in the present study reflects protein 
composition of sweat in general, we made 
comparisons with published data. The number of 
sweat proteins identified in different studies vary 
widely (comparison of sweat proteins from various 
publications are shown in [34]). Comparison of our 
data with a recent study of sweat secretion stimulated 
by pilocarpine iontophoresis, which described one of 
the highest number of sweat proteins [35], demons-
trated that out of 1057 proteins in pilocarpine-induced 
sweat 479 were shared with “total sweat proteins” 
from our study (Figure 4A; Supplementary Table 5). 
In addition, 108 proteins from [35] were identified 
only in EV-enriched sweat but not in total sweat 
samples. 

We next compared the proteomics data from our 
study to a previously published study, in which 
exosomes were isolated by sucrose density gradient 
centrifugation from pooled sweat of healthy adult 
volunteers performing aerobic exercise [37] (Figure 
4B; Supplementary Table 5). 697 EV proteins from our 
study were not described in that sweat exosomal 
study and 531 proteins from sweat exosomes were not 
found in any type of sweat samples (EV-enriched, 
total and patch) we analyzed. Only 512 proteins were 
common for EV enriched sweat we describe and 
sweat exosomes from the previous study [37], from 
which 198 proteins were shared between 
EV-enriched, total, patch sweat and sweat exosome 
proteome (Figure 4B). The difference can be explained 
by different sweat collection and EV isolation 
protocols, but also may reflect a high variability of 
proteins between individual samples. 

Comparison of samples from different 
individuals allows to define “core” sweat EV proteins, 
that were identified in each sample. It turned out that 
the “core” includes 240 proteins (about 20% of all 
identified EV proteins), among them many 
well-known exosomal markers (Figure 3B, Supple-
mentary Tables 2 and 6). Out of 240 most common 
sweat EV proteins, 154 were present in sweat 
exosomes as described by [37] and 183 were already 
described in EVs from at least one human biofluid (as 
reported in ExoCarta database; http://www.exocarta 
.org/)). The majority of these proteins were shown in 
exosomes isolated from urine (131 out of 240), but also 
blood (plasma and/or serum), saliva, breast milk and 
other biofluids (Figure 4C, Supplementary Table 6). 
Sweat EVs had much more common proteins with 
urine exosomes (ca. 55%) than with EVs secreted by 
cultured keratinocytes (ca. 15%) (Figure 4C, 
Supplementary Table 6). 165 out of 240 “core” 
proteins were bound by skin patches (Supplementary 
Table 2). Like EV-enriched sweat in general, patch EV 

proteins also showed a lot of similarities with 
biofluids’ EVs, as well as some proteins typical for 
keratinocytes’ EVs (Supplementary Figure 8A). 

We also included in comparison the results of 
[49], which instead of collecting sweat produced 
during physical exercise, analyzed composition of 
wash solution incubated with skin for 2 minutes (so 
called “skin secretome”). 144 proteins (ca. 60%) were 
common between our “core” sweat EV data and skin 
secretome (Figure 4D). One possible source of EVs in 
sweat may be dermal ISF, but comparison of our 
sweat EV data with the list of 84 proteins specific for 
dermal ISF found only 6 common ones [48] (Figure 
4D). 34 sweat EV proteins, including several annexins 
(A1, A3, A5, A11) and calpain-1 catalytic subunit, 
were significantly upregulated in serum EVs in 
response to exercise [47] (Figure 4D). Similarly to 
EV-enriched sweat, patch samples contained multiple 
proteins, characteristic of skin secretome, as well as 46 
proteins shown to be upregulated in blood EVs by 
exercise [47,49] (Supplementary Figure 8B). 

In general, we can conclude that the protein 
composition of sweat EVs, either isolated by ExoEasy 
columns or bound to alginate patches, is mostly 
similar with the composition of total sweat, and it 
contains multiple proteins that are typical for other 
human biofluids. 

EV glycosylation patterns 
Since changes in glycosylation patterns are 

commonly seen in cancer cells, glycoproteins are often 
used as prognosis cancer biomarkers [50]. Until 
recently, little attention has been given to the protein 
glycosylation patterns of EVs, though it is important 
for vesicles biogenesis, uptake and cargo recruitment 
[51,52]. In order to characterize glycosylation of sweat 
EVs we employed lectin microarray analysis. We 
found that sweat derived EVs contain N- and 
O-glycosylated proteins carrying mainly galactose- 
ending N-glycans and fucosylated N-glycans 
(Supplementary Figure 9, Supplementary Table 7). 
The O-glycosylated glycans were truncated and 
displayed only the initiating N-acetyl galactosamine 
(GalNAc) and the mucin type core 1 structure 
(Gal-β(1,3)-GalNAc). Identified in other types of EVs 
WGA (wheat germ agglutinin) -binding glycans 
((GlcNAcβ4)n) as well as MALI and MALII (Maackia 
amurensis lectins I and II) binding glycans 
(α-2,3-sialylated N-glycans) were not detected [51,52].  

We also found differences in glycosylation 
between individual samples, especially visible for 
binding of Galα(1,3)Gal or Galα(1,3)Galβ(1,4)GlcNAc 
to Marasmium oreades agglutinin (MOA). This 
variation probably stems from the ability of this lectin 
to bind specifically terminal Galα(1,3)Gal residues 
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present typically in the xenotransplantation epitope 
(Galα(1,3)Galβ(1,4)GlcNAc) and the branched blood 

group B determinant (Galα(1,3)[Fucα(1,2)]Gal) [53]. 

 
 

 
Figure 5. Bacterial proteins in sweat EVs. (A) Venn diagram comparing proteins of bacterial origin identified in sweat patches, EV-enriched samples and total (concentrated) 
sweat. (B) Frequency of occurrence of bacterial proteins in individual samples. Each color shows how many different proteins were found either in single samples (1), multiple 
samples (2-7), or all samples studied (8). The full list of proteins is given in Supplementary Table 8. (C) Distribution of proteins identified in individual sweat EV samples between 
bacterial phylae (see also Supplementary Table 9). Each column represents an individual sample. Color indicates how many different proteins from the same order are found in 
the sample. Number of protein hits assigned to each phylum in each sample are presented as log10-score. 
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Microbiome-derived proteins in sweat EVs  
Since human skin is permanently populated by 

diverse microorganisms [17] and bacterial EVs such as 
outer membrane vesicles (OMV) are increasingly 
recognized and characterized [14,54,55], we 
investigated the contribution of the skin microbiome 
to sweat and EV-enriched sweat protein composition. 
1691 proteins of bacterial origin were identified from 
all samples, which is more than the number of human 
proteins (Supplementary Table 8; Figure 5A). 
EV-enriched sweat samples contained all together 
1594 bacterial proteins, and total sweat samples 756. 
Individual variability of bacterial proteins between 
samples was higher than for human proteins with the 
majority of proteins only detected in single samples 
(1030 out of 1594), and only about 3% (30 proteins) 
could be detected in all 8 samples studied (Figure 5B). 
Interestingly, unlike with human proteins, there were 
few proteins of bacterial origin (80) found on skin 
patches (Figure 5A). 

In respect to taxonomy, the composition of 
EV-enriched sweat bacterial proteins was mostly 
similar to the composition of total sweat samples 
(Figure 5C, Supplementary Figure 10A). The majority 
of bacterial proteins in EV-enriched sweat belonged to 
phyla Actinobacteria, followed by Proteobacteria and 
Firmicutes (Figure 5C). Interestingly, proteins derived 
from phyla Bacteroidetes, typical colonizers of the gut, 
were also identified in sweat EVs. Taxonomical 
distribution of bacterial proteins in sweat EVs varied 
highly between individuals, probably reflecting 
individual differences in bacterial communities 
populating skin (Figure 5C). For example, proportion 
of proteins from Actinobacteria varied between 15% 
and 85% of all identified bacterial proteins depending 
on the sample. The largest proportion of patch-bound 
bacterial proteins belonged to Proteobacteria, which 
probably reflects specific bacterial composition of skin 
site where patches were located (Supplementary 
Table 9) [56,57]. Many genera identified by 
proteomics (Cutibacterium, Corynebacterium, Staphylo-
coccus, Micrococcus, etc.) are typical components of the 
skin microbiota [17]. Some genera include well known 
pathogenic bacteria causing skin infections (Mycobac-
terium, Cutibacterium, Staphylococcus, Campylobacter, 
etc.). 

Among the most commonly found bacterial 
proteins in sweat EVs were ubiquitin and 
Glyceraldehyde-3-phosphate dehydrogenase (EC 
1.2.1.-), which contribute to virulence of many 
pathogenic bacteria [58]. GO analysis for “cellular 
components” showed that the majority of identified 
bacterial proteins are cytoplasmic or represent 
extracellular region (Figure 6A). Based on GO 

analysis, highly enriched “molecular functions” for 
bacterial proteins are metal ion binding, nucleotide 
binding as well as oxidoreductase activity, and 
“biological process” represented different metabolic 
processes and oxidative stress response (Figure 6B, C). 
GO annotations of EV-enriched sweat and total sweat 
bacterial proteins were mostly similar. 

Discussion 
Unlike other biofluids, sweat EVs have not been 

extensively investigated [27,28,37]. The potential 
limitations due to low concentration of EVs in sweat 
and high variability of sweat content between 
individuals may be the main reason for that. Our own 
data on total sweat composition showed rather good 
overlap with published studies [3,4,11,34–36], but also 
found previously unreported proteins (Figure 4). 
Sweat composition is highly dynamic depending on 
the metabolism with temperature and muscular 
activity affecting amount of liquid, miRNAs, ionic 
and metabolite concentrations. Therefore, sweat 
analysis results depend on the methods used for 
collecting sweat. All together three different strategies 
to stimulate sweat production for proteomics studies 
were tested in humans [2,34]: pharmacological 
cholinergic stimulation by pilocarpine iontophoresis, 
temperature increase and physical exercise. 
Pilocarpine stimulation in combination with 
Macroduct collection system reflects “baseline” 
sweating, but it acts only via activation of one type of 
receptors (muscarinic receptors), applies to small 
areas of skin, results in low volumes of collected 
sweat and has relatively low accuracy due to the 
mixing of sweat and gel fluid [59]. The method of 
sweat collection used in our study (biking exercise 
wearing gloves and raincoat) results in large volumes 
of sweat that contains mixture of sebum, eccrine and 
apocrine sweat from various parts of body. It includes 
components induced by muscular activity as well as 
by external heating of the body. 

The only publication describing proteomics of 
sweat-derived exosomes [37] used pooled sweat 
sample from 13 participants exercising in hot weather 
(35 °C). Isolation of small EVs using a gradient 
ultracentrifugation from individual samples turned 
out to be not feasible, however, because the yields 
were too low (Zhyvolozhnyi and Samoylenko, 
unpublished observation). Instead of small EVs, we 
focused on a broader range of sweat EVs, isolated by 
size-exchange chromatography using ExoEasy 
columns (Figure 1). We identified the protein 
composition of individual EV-enriched sweat samples 
under conditions similar to the ones we used to 
analyze RNA content of EV-enriched sweat [27,28].  
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Figure 6. Classification of bacterial sweat EV proteins by GO annotations. Analysis of bacterial proteins found in total, EV enriched and patch sweat samples for 
biological processes for cellular components (A), biological processes (B) and molecular function (C). 
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After analyzing the protein content of all EV 
samples, we defined a “sweat EV core” consisting of 
240 proteins, that were identified in all samples tested. 
Typical exosomal markers such as CD63, CD9, ALIX, 
syntenin-1, annexin A5, HSP90, HSP70 were all 
identified among these sweat EV “core” proteins. 
Also, we found some potential cancer markers, such 
as LRG1, tetraspanin-8, PSA, TACD2 and glypican-1 
[46] (Figure 3B). Among these markers PSA may be of 
special interest since serum PSA detection is the most 
common method for initial prostate cancer screening. 
Other clinically proven disease protein biomarkers 
identified in EV-enriched sweat were C-reactive 
protein, a widely used inflammation marker detected 
by blood tests, alanine aminotransferase (ALT), 
aspartate transaminase (AST) and lactate dehydro-
genase (LDH) [60]. ALT is an enzyme that is primarily 
found in liver cells, and its release into the 
bloodstream is often associated with liver damage 
[61]. AST, like ALT, is mostly found in liver but is also 
present in cardiac and skeletal muscle cells. Increased 
AST levels in the bloodstream are indicative of tissue 
damage or injury. LDH is an enzyme involved in 
cellular metabolism and is found in various tissues, 
including the heart, liver, and skeletal muscles. 
Elevated levels of LDH in circulation are often 
associated with tissue damage or cell death [62]. The 
presence of ALT, AST and LDH in EV-enriched sweat 
suggests that sweat EVs have potential for assessing 
liver and cardiac health as well as musculoskeletal 
disorders through non-invasive means. 

We observed a lot of similarities between protein 
composition of sweat EVs and previously reported 
data describing EVs from other human biological 
fluids, especially urine (Figure 4B). It is not possible to 
conclude whether all the identified sweat EV proteins 
are directly derived from skin and sweat glands or 
whether some EVs from internal organs are 
transported in blood and transferred to sweat by the 
filtration system. A UniProt database search 
illustrated that the majority of identified sweat EV 
proteome components are ubiquitously expressed. 
Some are usually found in skin and/or mucosa such 
as serpin B13, kallikrein-7, and skin-specific protein 
32, reinforcing the value of the EVs in skin biology. 
Several identified proteins were present in EVs from 
keratinocyte culture, but not reported in biofluids 
before: NADP-ME1 (NADP-dependent malic 
enzyme), DPP3 (Dipeptidyl peptidase 3), GC (Group- 
specific component), DPP2 (Dipeptidyl peptidase 2), 
VCAN (Versican core protein), ALDH7A1 (Aldehyde 
dehydrogenase family 7 member A1), LFNG 
(Beta-1,3-N-acetylglucosaminyltransferase lunatic 
fringe). Typical blood proteins such as the 
complement system components and hemoglobin 

subunits, neuronal protein (neuroserpin), testis 
proteins (semenogelins 1 and 2), and bone marrow 
protein Neutrophil elastase (EC 3.4.21.37) [63] were all 
found in EV-enriched sweat. These observations 
suggest that sweat EVs may carry material derived 
not only from skin but also from other organs. In a 
similar way EVs from prostate cancer cells could be 
found in urine [64,65].  

Studies of bacteria-derived EVs such as OMV, in 
multiple processes including pathogenesis promotion 
or nutrients uptake, emerged in the last couple of 
years [54]. It has been shown that OMVs can induce 
specific immune responses in the host [66]. Our study 
is the first to report protein content of bacterial EVs in 
human sweat. Characterization of sweat microbiota 
EVs may be important for the analysis of skin 
bacterial infections as well as non-infectious diseases 
associated with the changes of skin bacteria 
composition, including diabetes mellitus [16]. We 
have identified Actinobacteria as the most abundant 
phylum in sweat EVs, followed by Proteobacteria and 
Firmicutes. The comparison of these proteomics results 
with our previously reported analysis of sweat EVs 
based on nucleic acids [27] showed higher proportion 
of Actinobacteria and lower proportion of 
Proteobacteria. In general, taxonomic diversity of 
bacterial sweat EVs proteins was well correlated with 
the data of total sweat and reflected high variability of 
skin microbiota composition between individuals. 

Large amounts of sweat (up to several hundred 
milliliters) required for isolating vesicles in our study 
by using ExoEasy columns is an important factor 
limiting its possible clinical use. Therefore, develop-
ment of small size user-friendly and cost-effective 
sweat collectors is highly needed. Alginate-based 
hydrogels were previously used to encapsulate and 
deliver EVs for treatment of myocardial infarction [67] 
and for diabetic wound healing [23]. Our report is the 
first to show that alginate skin patches could be used 
for studying protein composition of EVs. Though 
many typical EV markers were not detected in the 
patch samples, they contained CD63, which was 
shown before to be the main EV marker in sweat 
[27,28]. Interestingly, alginate patches collected very 
little proteins of bacterial origin. This may indicate 
differences in binding of EVs with distinct membrane 
composition to the skin patches used in the study. Our 
results may provide a solution for separation of 
human EVs from bacterial EVs, that presents a serious 
challenge in human biofluids and bacteria-rich 
samples such as feces [68]. 

In conclusion, we identified proteins that are 
present across different individual samples of human 
sweat and showed potential biomarkers for cancer 
and infectious diseases among sweat EV proteins. Our 
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data demonstrated that skin patches could be used for 
collection of sweat EVs of human origin and their 
separation from bacterial EVs. 
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