1. CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Sorbonne Paris Nord, campus Bobigny, France. 2. Department of Hepatobiliary Surgery, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases & Carson International Cancer Center, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, China. 3. BioEVEN start-up, 75 rue de Lourmel 75015 Paris, France. *Authors contributed equally to this work.
Arib C, Liu H, Liu Q, Cieutat AM, Paleni D, Li X, Spadavecchia J. Flavin Adenine Dinucleotide (FAD) Pegylated (PEG)-Complexes: Proof of Concept (PoC) of theranostic tool on a Murine Breast Cancer Model. Nanotheranostics 2022; 6(2):175-183. doi:10.7150/ntno.63496. https://www.ntno.org/v06p0175.htm
Flavin adenine dinucleotide (FAD) plays a key role in an extensive range of cellular oxidation-reduction reactions, which is engaged in metabolic pathways. The purpose of this study was to realize pegylated flavins formulation, named FAD and FAD-PEG diacid complex as theranostic tool in cancer therapy. For this objective, a murine breast cancer model, which was induced by mouse-derived4T1 breast cancer cells was studied to assess the therapeutic efficacy of FAD (named NP1) and FAD-PEG diacid complex (named NP2). The cytokines were monitored to evaluate the serum inflammatory factors to develop the blood cell content of different groups of nude mice. The experimental model shows that an intravenous injection of FAD (NP1) can significantly reduce tumour volume, tumour index and thymus index, and decrease neutrophils (NE), monocytes (MO), eosinophils (EO), and basophils (BA). At the same time, the content of IL-1α, IL-12P70, TNF α, IL-1β and IL-6 was significantly reduced, and the content of IL-10 was significantly increased. These results provide the proof-of-concept for FAD as a smart adjuvant for cancer therapy and encourages their further development in the field of Nanomedicine.
Citation styles
APA
Arib, C., Liu, H., Liu, Q., Cieutat, A.M., Paleni, D., Li, X., Spadavecchia, J. (2022). Flavin Adenine Dinucleotide (FAD) Pegylated (PEG)-Complexes: Proof of Concept (PoC) of theranostic tool on a Murine Breast Cancer Model. Nanotheranostics, 6(2), 175-183. https://doi.org/10.7150/ntno.63496.
ACS
Arib, C.; Liu, H.; Liu, Q.; Cieutat, A.M.; Paleni, D.; Li, X.; Spadavecchia, J. Flavin Adenine Dinucleotide (FAD) Pegylated (PEG)-Complexes: Proof of Concept (PoC) of theranostic tool on a Murine Breast Cancer Model. Nanotheranostics 2022, 6 (2), 175-183. DOI: 10.7150/ntno.63496.
NLM
Arib C, Liu H, Liu Q, Cieutat AM, Paleni D, Li X, Spadavecchia J. Flavin Adenine Dinucleotide (FAD) Pegylated (PEG)-Complexes: Proof of Concept (PoC) of theranostic tool on a Murine Breast Cancer Model. Nanotheranostics 2022; 6(2):175-183. doi:10.7150/ntno.63496. https://www.ntno.org/v06p0175.htm
CSE
Arib C, Liu H, Liu Q, Cieutat AM, Paleni D, Li X, Spadavecchia J. 2022. Flavin Adenine Dinucleotide (FAD) Pegylated (PEG)-Complexes: Proof of Concept (PoC) of theranostic tool on a Murine Breast Cancer Model. Nanotheranostics. 6(2):175-183.
This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.